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IMPORTANCE Recent clinical and imaging studies underscore that major adverse cardiac
events (MACE) outcomes are associated not solely with severe coronary obstructions
(ischemia hypothesis or stenosis hypothesis), but with the plaque burden along the entire
coronary tree. New research clarifies the pathobiologic mechanisms responsible for plaque
development/progression/destabilization leading to MACE (plaque hypothesis), but the
translation of these insights to clinical management strategies has lagged. This narrative
review elaborates the plaque hypothesis and explicates the current understanding of
underlying pathobiologic mechanisms, the provocative destabilizing influences, the
diagnostic and therapeutic implications, and their actionable clinical management
approaches to optimize the management of patients with chronic coronary disease.

OBSERVATIONS Clinical trials of management strategies for patients with chronic coronary
artery disease demonstrate that while MACE rate increases progressively with the anatomic
extent of coronary disease, revascularization of the ischemia-producing obstruction does not
forestall MACE. Most severely obstructive coronary lesions often remain quiescent and
seldom destabilize to cause a MACE. Coronary lesions that later provoke acute myocardial
infarction often do not narrow the lumen critically. Invasive and noninvasive imaging can
identify the plaque anatomic characteristics (plaque burden, plaque topography, lipid
content) and local hemodynamic/biomechanical characteristics (endothelial shear stress,
plaque structural stress, axial plaque stress) that can indicate the propensity of individual
plaques to provoke a MACE.

CONCLUSIONS AND RELEVANCE The pathobiologic construct concerning the culprit region of a
plaque most likely to cause a MACE (plaque hypothesis), which incorporates multiple
convergent plaque features, informs the evolution of a new management strategy capable of
identifying the high-risk portion of plaque wherever it is located along the course of the
coronary artery. Ongoing investigations of high-risk plaque features, coupled with technical
advances to enable prognostic characterization in real time and at the point of care, will soon
enable evaluation of the entire length of the atheromatous coronary artery and broaden the
target(s) of our therapeutic intervention to include all regions of the plaque (both flow
limiting and nonflow limiting).
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A ccumulating evidence reinforces the concept that many
major adverse cardiac events (MACE) in patients with
chronic ischemic heart disease are related less to the

flow-limiting coronary artery luminal lesions, but rather to the
overall atherosclerotic burden, be it obstructive or nonobstruc-
tive (what we term the plaque hypothesis).1-5 Recent work has
shed important new light into the basic pathobiologic mecha-
nisms that operate along the length of individual nonobstructive
portions of plaque responsible for these MACE outcomes. Yet,
the translation of these pathobiologic insights into clinical diag-
nostic and management strategies has lagged. This review
explores new data from vascular biology, atherosclerosis imaging,
natural history outcome studies, and large-scale clinical trials that
support the plaque hypothesis. It provides an update on patho-
biologic mechanisms, the provocative destabilizing triggers, and
the diagnostic and therapeutic implications that inform action-
able clinical management approaches to optimize the manage-
ment of patients with chronic ischemic heart disease.

The Ischemia Hypothesis or Stenosis Hypothesis
of the Natural History and Management
of Coronary Artery Disease
Classic pathogenetic concepts of coronary artery disease (CAD) com-
plications emerged from observations that inducible myocardial is-
chemia from a severe coronary luminal obstruction caused angina.
A reasonable extrapolation from these findings posited that ob-
structive lesions also provoked MACE (what we term the ischemia
hypothesis or stenosis hypothesis). Accordingly, risk stratification
aimed to identify those patients with the most ischemic myocar-
dium at risk since they were considered most likely to benefit from
revascularization strategies to reduce ischemia and thereby pre-
vent MACE.

However,recentnaturalhistoryfollow-upstudiesofindividualcoro-
nary plaques using intravascular ultrasonography (IVUS) or optical co-
herencetomography(OCT)invasiveimagingconsistentlydemonstrated
that the majority of severely obstructive coronary lesions, even those
withputativehigh-riskpathobiologicanatomicfeaturesandcausingse-
vere ischemia, often remain quiescent and do not destabilize to cause
a MACE, even over several years of follow-up.6-11 Large-scale noninva-
sive imaging investigations, using coronary computed tomography an-
giography (CCTA), which can evaluate the full length of the coronary ar-
teryandcoronaryplaques,alsounderscorethatcoronaryarterial lesions
that later provoke acute myocardial infarction (MI) often do not narrow
the lumen critically.12-14 Most importantly, such studies indicate that the
risk of CAD events is associated more with the extent of the plaque bur-
den throughout the coronary tree than the severity of individual lumi-
nalobstructions.2,3,5 Thesemorerecentstudiesaffirmedtheinferences
from earlier studies that used angiography, a modality that images the
lumen rather than the lesions themselves.15-18

Pharmacologic management of obstructive CAD now includes
more biologically directed therapeutic interventions and disease-
modifying noninvasive therapies than in the past. In addition to phar-
macologic measures directed mainly at improving the balance be-
tween oxygen supply and demand distal to flow-limiting stenoses,
we currently possess agents that alter plaques themselves or the risk
factors or thrombotic milieu (eg, statins, ezetimibe, PCSK9 inhibi-

tors, icosapent ethyl, late-generation antiplatelet agents, and now
even agents developed to reduce glycemia such as sodium-
glucose cotransporter-2 inhibitors and glucagonlike peptide-1 re-
ceptor agonists) or the inflammatory milieu (eg, interleukin 1β in-
hibitors, colchicine). These newer therapies appear to reduce MACE
not so much by luminal expansion, but by biological modification of
atherosclerotic involvement along the full-length of coronary arter-
ies, not just the obstructive lesions.5

The results of the Clinical Outcomes Utilizing Revasculariza-
tion and Aggressive Drug Evaluation (COURAGE) trial19 and later
Bypass Angioplasty Revascularization Investigation 2 Diabetes
(BARI2D) trial20 most clearly challenged the ischemia hypothesis
by using a management strategy of intensive medical therapy
plus percutaneous coronary intervention (PCI) and/or coronary
artery bypass grafting (CABG) (BARI2D trial20) vs intensive medi-
cal therapy alone. These studies demonstrated equivalent cumu-
lative incidence of events by the disease-modifying medical
therapies or by invasive revascularization. PCI did not reduce
death or MI compared with medical therapy alone over the period
of observation, even in patients with extensive 3-vessel CAD, or
proximal left anterior descending artery stenosis of 90% or more.
Limitations to these studies included the very low rate of drug-
eluting stent use, the absence of a predefined threshold for the
extent and severity of baseline ischemia at entry, and the deter-
mination of eligibility only after coronary angiography.

A study that guided revascularization based on fractional
flow reserve (FFR) (Fractional Flow Reserve Versus Angiography
for Multivessel Evaluation 2 [FAME 2] trial8) reinforced for many
the concept that a flow-limiting obstruction caused the compos-
ite primary end point of death, MI, or urgent revascularization.
Yet, the sole driver of the favorable composite outcome with
FFR-guided PCI was the unblinded component of urgent revascu-
larization, while the objective outcomes of death or MI did not
improve.

The more recent International Study of Comparative Health Ef-
fectiveness with Medical and Invasive Approaches (ISCHEMIA) trial21

aimed to avoid the limitations of the prior large-scale investiga-
tions of the ischemia hypothesis. As in most other trials, the rate of
the primary outcome (composite of cardiovascular death, MI or hos-
pitalization for unstable angina, heart failure, or resuscitated car-
diac arrest) progressively and significantly increased as the ana-
tomic extent and severity of angiographically defined atherosclerotic
coronary obstructions increased from single- (8.2%) to double-
(11.9%) and to triple-vessel (23.9%) disease over a median 3.2-year
follow-up. In contrast, adverse outcomes were not associated with
the extent and severity of myocardial ischemia.21,22 Moreover, and
consistent with the evolving understanding of the culprit lesion(s)
responsible for MACE, mechanical revascularization of the flow-
limiting obstruction(s) with either PCI or CABG did not reduce those
MACE outcomes.21 In a subgroup analysis, the patients who under-
went invasive treatment in the ISCHEMIA trial manifested fewer
spontaneous MIs than the patients who underwent conservative
treatment,23 but the relationship between the revascularization pro-
cedure and the MI reduction is unclear since the reduction in spon-
taneous MIs was observed even if the patient had no PCI per-
formed or had no obstructive CAD. Invasively managed patients also
may have had fewer spontaneous MIs due to the ongoing use of dual
antiplatelet therapy or to ascertainment bias.23
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The recent prospective, double-blind COMBINE OCT-FFR11 natu-
ral history study of FFR-guided PCI and identification of FFR-
negative thin cap fibroatheroma (TCFA) character lesions in 550 pa-
tients with diabetes with either chronic CAD or an acute coronary
syndrome (ACS) demonstrated convincingly that many culprit
plaques responsible for future MACE had TCFA characteristics but
unimpaired FFR. The patients who had evidence of such TCFA (25%
of the cohort) had a 5-fold higher rate of MACE over an 18-month
follow-up (>80% of future MACE) compared with patients without
a TCFA character lesion, despite the absence of ischemia. These
MACE outcomes were mainly spontaneous MIs and also target le-
sion revascularization related to worsening angina due to plaque pro-
gression and minimal lumen area (MLA) reduction. The Fractional
Flow Reserve Versus Angiography for Multivessel Evaluation (FAME)
3 trial,24 which randomized patients with 3-vessel CAD to revascu-
larization with FFR-guided PCI or to CABG, also demonstrated that
FFR-guided PCI was not noninferior to CABG at 1-year follow-up. Since
all lesions with abnormal FFR in the FFR-guided PCI group under-
went PCI, the results suggested that the lesions responsible for MACE
in that group during follow-up were lesions that were not flow lim-
iting at baseline, and, per protocol, did not undergo PCI. In con-
trast, CABG bypassed both the flow-limiting and many nonflow-
limiting lesions, and these patients experienced a significantly lower
incidence of the composite primary end point.

The Plaque Hypothesis: Fundamental Concepts
Linking the Pathobiology of Coronary
Atherosclerosis to MACE
The ensemble of recent large-scale clinical trial results and earlier an-
giographic findings affirm that severely obstructive focal plaque re-
gions traditionally targeted for revascularization do not necessarily
cause the abrupt plaque complications that generally provoke MACE.
Hence, epicardial coronary artery stenosis relief by PCI or CABG did
not improve prognosis. These more recent studies reinforce the con-
cept that while PCI may ameliorate regional ischemia, and there-
fore reduce symptoms of angina,25 the most consequential compli-

cations of atherosclerosis, ie, nonfatal MI and cardiac death, often
originate from plaques or portions of plaque that do not produce the
most severe obstructions.

These observations provide further support for the view that
obstructive plaques serve principally as a marker for atheroscle-
rotic burden, including complex and heterogeneous plaques that
may be nonobstructive or obstructive or that may contain regions
of both flow-limiting obstruction and nonflow-limiting disease
(Figure 1). Despite this accumulating evidence, our prevailing diag-
nostic and therapeutic management strategies and guidelines have
lagged and still largely reflect the ischemia hypothesis that posits
that alleviation of stenosis as the key to effective treatment. Ac-
cordingly, we need to broaden our management approach for chronic
CAD to focus on identifying and altering pathobiological aspects of
plaques along the course of atheromatous arteries, not merely those
lesion segments that provoke ischemia.

Vascular Pathobiology of Coronary Atherosclerosis
and the Role of Biomechanics
in Plaque Destabilization
Our evolving understanding of the natural history of CAD derives
from early observations of the vascular biology and clinical mani-
festations of atherosclerosis. More than 30 years ago, Glagov et al,26

Clarkson et al,27 and others emphasized the expansive outward re-
modeling that accommodates an enlarging plaque during much of
a lesion’s progression. Such compensatory enlargement of arteries
can prevent luminal encroachment by even very large lesions and
preserve myocardial blood flow distal to that plaque. Such culprit
lesions are not necessarily small but do not cause critical stenosis
due to expansive remodeling that accommodates plaque growth ab-
luminally, preserving the luminal caliber. Indeed, positive remodel-
ing determined by CCTA characterizes plaques with elevated risk of
provoking an ACS.28 Plaque disruption in patients with acute MI and
nonobstructive CAD, defined as coronary luminal obstruction less
than 50%,29 also supports the concept that culprit plaques caus-
ing ACS need not obstruct the lumen. Recent invasive and nonin-

Figure 1. Coronary Atherosclerotic Plaque as a Complex, Lengthy, and Heterogeneous Pathobiologic Lesion
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vasive studies investigating the size, shape, constituents, and he-
modynamic environment surrounding coronary plaque provide
essential new pathobiologic understanding concerning the de-
tailed plaque regions that are prone to destabilize and likely give rise
to future adverse clinical events (Figure 2).31

The first efforts to identify high-risk plaques at risk to trigger an
ACS (so-called vulnerable plaques) emerged from morphological
characterization alone (large plaque burden, TCFA morphology, nar-
row MLA, and lipid accumulation).6,10,36-38 While these anatomic
plaque characteristics were associated with increased MACE out-
comes, the positive predictive value was less than 20%. This rec-

ognition spurred the investigation of the biomechanical stresses that
may influence whether an individual plaque will progress, destabi-
lize, or remain quiescent.32 Earlier studies demonstrated that low
endothelial shear stress (ESS), the frictional force of blood acting on
the endothelial cells of the arterial wall, disrupted the homeostatic
atheroprotective properties of the normal endothelium. Low ESS
elicits proinflammatory, pro-atherogenic, and prothrombotic prop-
erties of the intimal lining and impairs basal vasodilatory and other
atheroprotective endothelial functions.31,39,40 Serial invasive stud-
ies confirmed that low local ESS tracked with plaque initiation and
progression9,41-43 and that local low- or high-ESS environments

Figure 2. Pathobiologic Mechanisms of Plaque Progression and Disruption
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Shown are the coronary plaque and arterial features that may lead to plaque
progression and destabilization culminating in major adverse cardiac events in a
variety of plaque scenarios involving a constellation of pathobiologic and
biomechanical mechanisms, which may operate alone or in concert with other
pathologic mechanisms. A, Plaque initiation and development begin in zones of
low and disturbed blood flow (ie, low endothelial shear stress [ESS]), regions
that typically occur on the inner aspect of an artery curve, outer waists of a
bifurcation, and upstream and downstream from a luminal obstruction. Local
low ESS leads endothelial cells to switch from expressing a palette of
atheroprotective properties to adopt proinflammatory, pro-atherogenic, and
prothrombotic functions. Ongoing exposure to low ESS leads to progressive
plaque burden, lipid accumulation, and thin cap fibroatheroma (TCFA)
formation. B, Plaques can progress in a stepwise manner to destabilization
(rupture, superficial erosion, or calcium nodule eruption, events that can
provoke thrombosis), followed by plaque healing.30 Repeated destabilization
and the healing response to disruption including thrombus resorption can lead
to progressive plaque fibrosis, constrictive remodeling, and encroachment into
the lumen. C, Prominent pathobiologic mechanisms contribute to plaque
destabilization and complications. (1) Regions along the course of a plaque may
encounter ongoing pro-atherogenic low ESS (Figure 1) and continue to develop
local progressive inflammation, lipid accumulation, and elaboration of
matrix-degrading metalloproteinases that promote fragility and instability of
the fibrous cap and internal plaque structures, thereby fostering plaque
rupture. These events may occur in a nonobstructive plaque or in plaque

portions upstream or downstream from a luminal obstruction. (2) Portions of
the plaque that encroach into the lumen create local high ESS at the throat of
the obstruction that may cause endothelial cell elaboration of matrix-degrading
metalloproteinases, endothelial death or desquamation, and platelet activation,
rendering plaques more prone to provoke thrombosis. Plaque regions
immediately adjacent to the high ESS typically also exhibit sites of low and
oscillatory ESS, with its attendant pro-atherogenic and proinflammatory
consequences31 as described in scenario 1. (3) High ESS gradients, which
represent abrupt large differences in the magnitude of ESS in immediately
adjacent endothelial cells, or steep plaque upslope/downslope, with or without
associated high ESS, will increase axial plaque stress and promote plaque
disruption. This adverse biomechanical stress operates independently of
stenosis severity, drop in perfusion pressure, or local ESS. (4) The composition
and spatial proximity of internal plaque constituents of different material
properties can create inhomogeneities that affect cellular function and modify
the structural integrity of the plaque and foster disruption (plaque structural
stress or tensile stress).32 Computation of plaque structural stress requires
accurate depiction of both atherosclerotic plaque composition and architecture.
(5) Intraplaque hemorrhage may develop either as a result of microruptures of
the plaque cap or leaking from immature and leaky vasa vasorum within an
enlarging plaque, leading to an abrupt conformational change due to the
atherogenic properties of lipids from degraded red blood cell membranes and
released free hemoglobin and heme.33-35 Iron derived from heme can drive
local oxidative stress, further promoting lesion complication.35

Clinical Review & Education Review Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease

E4 JAMA Cardiology Published online December 14, 2022 (Reprinted) jamacardiology.com

© 2022 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a CHAIM SHEBBA HOSPTIAL User  on 12/18/2022

http://www.jamacardiology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamacardio.2022.3926


predicted future MACE when added to plaque anatomic
assessment.9,44,45

These and other current data obtained with intravascular or
CCTA imaging indicate a much more heterogenous and dynamic na-
ture of plaque morphology and behavior than traditionally con-
ceived, and the appreciation that plaque destabilization and MACE
may require a perfect storm of a constellation of a number of high-
risk plaque features (the solid state), as well as an unfavorable throm-
botic/fibrinolytic balance in blood (the fluid phase) (Figure 2 and
Figure 3).46-49

For example, local areas of proinflammatory low ESS may lead to
destabilization of a portion of the plaque in the absence of flow limi-
tation due to local elaboration of interstitial collagenases and elasto-
lyticproteasesthatdegradeinternalplaquestructures.42,44,50,51 Plaque
topography, especially the upslope and downslope that surround a lu-
minal obstruction (axial plaque stress), may substantially impact the
proclivity, location, and nature of focal plaque disruption, which may
also explain why even nonobstructive plaques may destabilize if their
topographical slope is adverse.52,53 Recent OCT studies similarly dem-
onstrate that focal areas of high ESS and, in particular, high ESS gradi-
ent (the difference in ESS values of immediately adjacent endothelial
areas),whichalsocorrelateswithplaqueslope,contributetotheplaque
destabilization process of erosion or rupture.53-55

The location of plaque constituents and their material proper-
ties often vary markedly along the course of an individual plaque,
leading to very heterogeneous patterns of plaque structural stress,
which can influence subsequent plaque destabilization and the oc-
currence of MACE.56 Invasive or noninvasive imaging can identify
these constituents, which may include necrotic core, fibrofatty tis-
sue, fibrous tissue, and calcium. Plaques that heal following disrup-
tion may manifest plates of calcification, which provide mechanical
stability to the plaque,30 while spotty calcification, which may rep-
resent an earlier form of calcification development, is associated with
plaque instability.57

Intraplaque hemorrhage may result from leaky vasa vasorum,
or from microruptures of a thin plaque cap, regardless of plaque
size or lumen encroachment. The presence of free blood within
the plaque may lead to a structural change due to the atherogenic
properties of lipids from degraded red blood cell membranes and
released free hemoglobin and heme.33-35 Marked worsening of
angina, a frequent component of MACE,6,9,11 may also result from
this plaque change in shape without a thrombotic component.
Ferrous iron derived from heme may drive local oxidative stress
regionally within plaques as well via the Fenton reaction.35,58

These various pathobiologic features may occur in a variety
of locations along the course of the plaque, regardless of the mag-

Figure 3. A 2-State Concept of Atherothrombosis
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The classic high-risk atheroma has a thin fibrous cap overlying a large lipid core
that contains tissue factor–bearing macrophages. When the fibrous cap
fractures, coagulation proteins in the fluid phase of blood gain access to tissue
factor–associated macrophages and tissue factor–bearing microparticles
derived from apoptotic cells in the solid state of the plaque, these events trigger
thrombus formation on the ruptured plaque. The clinical consequences depend
on the amount of tissue factor and apoptosis in the plaque’s core and on the
levels of fibrinogen and plasminogen activator inhibitor 1 (PAI-1) in the fluid
phase of blood. The interaction of the fluid phase with the solid state
determines whether a given plaque disruption provokes a partial or transient

coronary artery occlusion (that can be clinically silent or causes an episode of
unstable angina) or a persistent and occlusive thrombus that can precipitate an
acute myocardial infraction. Neutrophil extracellular traps (NETs) can localize at
the interface of the solid state of the intima with the fluid phase of blood. Their
externalized strands of extruded nuclear DNA are decorated with mediators
including tissue factor and can propagate and amplify local inflammation and
thrombosis around this critical interface. SMC indicates smooth muscle cells;
tPA, tissue plasminogen activator; TM, thrombomodulin; uPA, urokinase-type
plasminogen activator.
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nitude of plaque luminal encroachment, and thus a therapeutic
mechanical intervention such as PCI targeted to the ischemia-
producing stenotic segment alone would leave untreated
adjacent proinflammatory and prothrombotic plaque regions
upstream or downstream from the site of greatest stenosis.
Indeed, a 2017 IVUS study observed that plaque rupture occurred
at the site of the MLA in only 16% of culprit lesions, while the site
of plaque rupture localized either substantially upstream or
downstream from the MLA in more than 80% of cases.52

The PREDICTION study confirmed the highly heterogeneous na-
ture of evolution of focal plaque anatomic features. This prospec-
tive, invasive, serial imaging study of patients after having ACS in-
vestigated the effect of baseline ESS patterns of individual plaques
on subsequent characteristics of 3-mm plaque subsegments within
that plaque 6 to 10 months later. The baseline mean (SD) plaque
length in 661 plaques from 302 patients was 26 (14) mm, and plaques
of greater length had significantly increased numbers of distinct re-
gions with different arterial remodeling and focal shear stress pat-
terns within each plaque, which, in turn, led to highly varied focal
3-mm areas of plaque progression, regression, and quiescence at fol-
low-up (Figure 4).59,60 Serial invasive studies of plaque character-
istics highlight that lesions typically change substantially over time
as plaques heal after an episode of destabilization30 or as inflam-

matory and vascular remodeling characteristics evolve reflecting
changing local vascular conditions.61,62 In contrast to the limited ben-
efits of PCI to prevent MACE, CABG surgery bypasses more exten-
sive areas of both flow-limiting and nonflow-limiting arterial plaques
than PCI and thus may more likely reduce the risk of subsequent
spontaneous MI.20,24,63,64

Focal vs Systemic Therapeutic Approaches
to Treating Culprit Plaques
These considerations argue for diagnostic and therapeutic strate-
gies that focus on the entire length of an atheromatous coronary ar-
tery to reduce cardiac events. Systemic vasculoprotective strate-
gies of pharmacologic and lifestyle interventions can reduce
inflammation and lipid accumulation throughout the length of the
coronary artery, but we must acknowledge that despite intense ad-
herence to systemic vasculoprotective interventions, a substantial
number of adverse events nevertheless occur.11 For example, de-
spite the dramatic lipid-lowering potential of PCSK9 inhibitors to re-
duce low-density lipoprotein cholesterol to even below 10 mg/dL
(to convert to millimoles per liter, multiply by 0.0259) and direct anti-
inflammatory strategies with interleukin 1β inhibition or colchicine,

Figure 4. Heterogeneity of Local Arterial Remodeling and Endothelial Shear Stress (ESS) Within Plaques and Resultant Changes in Plaque Burden
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which significantly reduced MACE by 15% to 25% compared with
standard care,65-67 75% to 85% of MACE still occurred during the
follow-up period in patients who underwent more intensive treat-
ment. Addressing this residual risk despite systemic pharmaco-
logic therapy remains a major clinical challenge today.

Evolving Diagnostic Strategies and Methods to
Improve Characterization of High-Risk Plaques
Understanding the propensity of distinct regions within individual
coronary plaques to cause MACE will require assessment and incor-
poration of multiple plaque features, including anatomic, biochemi-
cal, and biomechanical characteristics that can contribute to throm-
botic complications (Figure 5).9,14,44,45,56 Characterization of
individual plaques has generally used invasive assessment with OCT
or IVUS imaging, but the ability of noninvasive imaging, particularly
CCTA, to characterize plaques and their hemodynamic features, has
evolved very rapidly despite providing less spatial resolution than
the invasive intravascular modalities.68-70 High-risk plaque fea-
tures based on CCTA, such as low-attenuation plaque, positive re-
modeling, spotty calcification, and napkin-ring sign, especially when
combined with adverse biomechanical characteristics (ESS, FFR, axial
plaque stress), show great promise to predict which patients and
plaques may produce future MACE.14

A major impediment to adoption of existing risk-stratification
methods that interrogate the entire length of individual regions of
atheroma is the current requirement for offline analyses of plaque
anatomic/hemodynamic/biomechanical characteristics that are time
consuming and require substantial technical and computational re-
sources. Nevertheless, intense efforts underway to enhance imaging
and postprocessing systems and the application of artificial intelli-
gence and machine learning should eventually permit more rapid and
detailed assessment of these high-risk characteristics at the point
of care within a very few minutes of image acquisition. Such ad-
vances would enable real-time assessment and subsequent deploy-
ment and monitoring of highly selective appropriate therapeutic in-
terventions, such as PCI or local intracoronary balloon drug delivery,
regardless of the location of a high-risk region along the course of
the atheromatous artery. Such pathobiologic diagnostic and man-
agement considerations pertain largely to patients with chronic CAD.

In patients with ACS, because the culprit plaque has already desta-
bilized, early mechanical revascularization of the culprits of
ST-segment elevation myocardial infarction and many non–ST-
segment elevation acute coronary syndrome do confer clinical ben-
efit in these acute settings.

Compelling Need for a Systematic and
Fundamental Shift in Our Management Approach
for Chronic CAD
Our current approach of identifying and treating mainly flow-
limiting epicardial coronary obstructions in chronic CAD fails to pre-
vent many MACE. Results from recent strategy clinical trials, such
as ISCHEMIA,21 FAME 3,24 and COMBINE OCT-FFR,11 underscore that
strategies to identify the severity of an epicardial coronary obstruc-
tion or to quantify the magnitude and extent of ischemia provide
little value. Patients who fit the entry criteria of the ISCHEMIA trial21

who have little or no angina and an acceptable quality of life, who
likely comprise a majority of patients with chronic CAD (approxi-
mately 80% of patients in the ISCHEMIA trial21), are appropriately
managed with an intensive medical therapy approach rather than
an initial invasive diagnostic or revascularization approach.71 The in-
vasive strategy offers evidence-based value for those patients with
frequent or angina that limits quality of life despite intensive medi-
cal therapy.21,25,71

Indeed, current data compel us to adopt a broader view (eB-
oxes 1 and 2 in the Supplement). The continued refinement of the
invasive and noninvasive imaging and computational methods
will enable rapid examination of the full length of the coronary
artery wall and identify those plaque features that constitute the
highest risk of destabilization and MACE. CCTA currently provides
an initial, noninvasive diagnostic assessment of the extent of
plaque burden, and the nature and localization of certain high-risk
plaque features, including the local coronary hemodynamic and
plaque biomechanical environment. Rapidly evolving methods of
computational fluid dynamics will enable this risk assessment to
be completed and reported in real time at the point of care. This
noninvasive strategy would likely be appropriate for patients with
known CAD and those at highest risk of CAD, which could include
those with high risk but asymptomatic clinical features such as

Figure 5. Multimodality Variables to Predict Plaque Development, Progression, Destabilization, or Quiescence

Plaque
Anatomic variables

Luminal diameter obstruction (%D)
Minimal lumen area
Plaque burden
Plaque necrotic core
Fibrous cap thickness
Microcalcifications
Macrophage accumulations
Lipid Core Burden Index (LCBI4 mm)
Arterial remodeling

Biomechanical variables
ESS:
Frictional force of blood flowing
across endothelium/surrounding
plaque (powerful stimulus for local
inflammation, atherogenesis, or
quiescence)

Plaque structural stress:
Outward perpendicular stress
related to material properties of
plaque composition/morphology;
may promote mechanical fragility

Axial plaque stress:
Longitudinal axis of hemodynamic
stress acting on plaque based on
slope of plaque contours; may lead
to physical disruption of plaque

Low ESS High ESS Low/oscillatory 
ESS

DownstreamUpstream

Throat of obstruction

Necrotic
core

Anatomic and biomechanical
pathobiologic features can be
routinely characterized by invasive
coronary imaging (optical coherence
tomography, intravascular
ultrasonography, and near-infrared
spectroscopy) and noninvasive
imaging (computed tomography
angiography). These variables report
on characteristics that foster plaque
formation, progression or
quiescence. Modified from Stone47

with permission. ESS indicates
endothelial shear stress; LCBI, lipid
core burden index.
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marked hyperlipidemia and elevation of other coronary risk fac-
tors. This strategy could also be repeated periodically as the
underlying plaque risk may change over time.61,62 CCTA also can
guide clinicians on the detailed localization of CAD, such as the
presence of left main CAD, which may dictate CABG surgery.

Invasive risk assessment of the full array of adverse plaque fea-
tures will be appropriate for patients who undergo coronary angi-
ography for routine clinical indications, as well as those patients iden-
tified to be at high risk from noninvasive CCTA screening. Invasive
assessment with IVUS or OCT not only enables more detailed and
precise assessment of plaque risk, due to their higher resolution than
CCTA, but also could inform possible preemptive PCI since real-
time reporting of high-risk plaque features will soon be available while
the patient is in the catheterization laboratory. This strategy would
require rigorous validation of clinical efficacy when added to cur-
rent and evolving highly effective noninterventional therapies. Fu-
ture research will be necessary to determine if high-risk features iden-
tified by CCTA that persist despite such intensive medical therapy
are appropriate considerations for preemptive PCI, even in the ab-
sence of symptoms.

Such advances could also permit early evaluation of novel
therapeutics and gauge the intensity of lifestyle and disease-
modifying pharmacotherapy. In some cases, the high-risk portion
of a potential culprit plaque may be suitable for preemptive inva-
sive local intervention, whether by PCI or by local administration

of pharmacologic agents, regardless of the magnitude of that
plaque’s encroachment into the coronary lumen. Such proactive
strategies might modulate the adverse features of the high-risk
portion of plaque in a controlled manner and reduce its ability to
destabilize and provoke a new MACE. The full palette of biologi-
cally directed and disease-modifying current medical treatments
should serve as comparators in further trials of revascularization
vs medical therapy.

Future Directions and Conclusions
The ISCHEMIA,21 FAME 3,24 and COMBINE OCT-FFR11 trials results
emphasize that application of the ischemia hypothesis and the treat-
ment of obstructive epicardial flow-limiting stenoses alone do not
suffice to reduce MACE in high-risk patients with chronic CAD or ACS.
Thus, in addition to systemic therapies directed at reducing re-
sidual dyslipidemic, thrombotic, metabolic, and inflammatory car-
diovascular risk, we need to consider embracing a new manage-
ment strategy that directs our diagnostic and management focus to
evaluate the entire length of the atheromatous coronary artery (the
plaque hypothesis) and broaden the target(s) of our therapeutic in-
tervention to include all regions of the plaque (both flow-limiting and
nonflow-limiting), even those that are distant from the presumed
ischemia-producing obstruction.
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